Optical Receivers

- Optical receiver components
 - Optical detector: convert modulated light into electronic signal
 - Preamp: amplify weak electrical signal
 - Equalizer: recover bandwidth lost in preamp
 - -Postamplifier: further amplifies signal
 - Filter: remove unwanted frequency components
 - Clock recovery: recover clock sent on optical signal
 - Decision circuit: sample signal and recover data
- •Receiver design is complicated because...
 - -Weak optical signal
 - -Electronic noise present

Clock recovery

- Low-data-rate receivers
 - *Detection done asynchronously
 - **❖**Receiver clock not tied to transmitter clock
 - ***Comparator decides whether pulse present or not**
 - *Pulses need sharp rise and fall times
- - *Data clock encoded in signal and recovered at receiver
 - ***Optimum sampling time in bit interval**

Noise

- Noise
 - -Produces errors in data
 - -Introduced by
 - » Transmitter
 - » Channel
 - •Fiber: zero channel noise
 - » Detector
 - » Electronic processing
 - Optical-detector noise different than radio and electronic detectors
 - » Signal-dependent

Physical operating principles Physical operating principles Pin photodiode Avalanche photodiode (APD) Operating parameters Noise performance Operating speed. Digital receiver design in terms of... Amplifier noise Optimization of signal-to-noise ratio Requirements for equalization amplifier Sensitivity of optical receiver is function of... Detector noise and... Preamplifier choice

Receivers: Detector Converts optical input power to current output Photodetector properties -Efficiency -Noise -Spectral response -Speed -Linearity -IC-compatibility -Reliability -Price Semiconductor photodiodes -pin photodiode -Avalanche photodiode (APD)

Photodiodes: Physical Principles

•Reverse-biased pin junction

- Depletion region (no free carriers) around junction
- •Portion of light absorbed in depletion region and...
 - -Hole-electron pair created
- Pair separated and swept out by electric field
- Sensed by outside circuitry
- •Number of hole-electron pairs per second freed
 - -Linearly dependent on optical power
 - -Electric current proportional to optical power

Photodiodes: Spectral Response

• Bandgap energy: energy required to free hole-electron pair

Material	E_g (eV)	λ _{max} (μ m)
Si	1.14	1.09
Ge	0.67	1.85
GaAs	1.43	0.867
In _{0.14} Ga _{0.86} As	1.15	1.08
In _{0.53} Ga _{0.47} As	0.75	1.65

- •Long- λ response: no sensitivity at long λ
 - **–Photon energy:** $hc/\lambda \ge E_g$
 - -Long wavelength cutoff

$$\lambda_{\text{max}} = hc/E_g; \implies \lambda'_{\text{max}}[\mu\text{m}] = 1.24 / E'_g[\text{eV}]$$

» Si: λ_{max} = 1.09 $\mu\text{m}, \text{ short-}\lambda$ detector

» InGaAs & Ge: long- λ (1300, 1550 nm) detectors

Photodiodes: Spectral Response (cont.)

- •Short-λ response
 - -No sensitivity at short λ
 - » Light penetration into depletion region...
 - Power absorbed in depletion region...

$$P(w) = P_i e^{-\alpha t} \left(1 - e^{-\alpha w} \right) \left(1 - R_f \right)$$

- •Increase w with i layer of pin
- At short wavelengths

 - -Little power penetrates

Detectors: Sensitivity

- Given by responsivity or quantum efficiency:
 - -Responsivity: output current per watt of optical power in
 - Quantum efficiency: number of hole-electron pairs generated per photon

$$\Re = I_{
m out}/P_{
m in}$$

$$\eta = Ihc/qP_i\lambda = hc\Re/q\lambda$$

•Spectral response...

Rcvrs-8

•Ex., detector producing 80 μA for 500 μW input at 850 nm has \mathfrak{R} = 160 mA/W and η = 23.4%

Detectors: Sensitivity - Probability Approach

asic noise source: quantized nature of light

eak incident signal, output current <u>not</u> exact replica of ideal urrent

- -Random generation of charge-carrier pairs by photons
 - » Poisson random process
 - Total carriers generated in time from t to t+T is random variable
 - Average number of carriers

$$\overline{N} = (\eta \lambda / hc) \int_{t}^{t+T} p(t) dt = (\eta \lambda / hc) E$$

- –E: total energy in interval T
- » Probability that number of charges created, *N*, equals specific number, *n*,

$$P(N=n) = \overline{N}^n e^{-\eta \lambda E/hc}/n!$$

$$\rho(t) dt = \frac{\Re p(t)}{q} dt = \frac{\eta \lambda}{hc} p(t) dt$$

Detectors: Probability Approach (cont.)

- Application of Poisson results
 - -Want probability $< 10^{-9}$ that "0" detected (N = 0) when "1" transmitted; what E is needed?

$$P(N = n = 0) = \overline{N}^n e^{-\eta \lambda E/hc} / n! \le 10^{-9}$$

$$P(N=0) = \overline{N}^{0} e^{-\eta \lambda E/hc} / 0! = 1 e^{-\eta \lambda E/hc} / 1 \le 10^{-9}$$

$$E \ge 21hc/q\lambda$$
 (i.e., 21 photons)

- Require reception of 21 or more photons during bit period when a "1" is transmitted to ensure detection with error probability <10-9
- •If number of "1"s and "0"s equal and bit period is T_B ,

$$P_{\text{average}} \ge \frac{21hc}{2\eta\lambda T_R} = \frac{21hcB_R}{2\eta\lambda}$$
 (for $P_e \le 10^{-9}$)

Generalization of BER Results

•For any desired BER (bit error rate), need...

$$e^{\left(\frac{-\eta\lambda E}{hc}\right)} \le BER$$
 or $E \ge \frac{hc}{\eta\lambda} \ln\left(\frac{1}{BER}\right)$

•Minimum required average power is...

$$P_{\text{average}} = E_{\text{min}}/2T_{\text{B}} = E_{\text{min}}B_{\text{R}}/2$$

•Theoretical power required to achieve desired BER when limited by light quantization

Avalanche Photodiode: Physical Principles

- Differences from pin diodes
 - -Dope *p* and *n* regions higher
 - -Narrow p region added between i and n+ region (see notes below)
 - » Electric field in this region larger than in depletion region
 - Field accelerates carriers to high velocities
 - Collisions create more hole-electron pairs (impact ionization)
- Operating physics
 - -Light enters through p^+ region and (ideally) absorbed in *i* region
 - -Generated carriers separate and drift across *i* region
 - When electrons enter p region, accelerated and impact other atoms, creating more carriers
 - Carriers are accelerated and, in turn, create more carriers (avalanche effect)

Rcvrs-12

Structure

lonization by collisions

■ Field strengths in excess of 3� 15 V/cm required

Avalanche Photodiode: Physical Principles(cont.)

- Avalanche multiplies photocurrent
 - Multiplication factor: $M = I_M/I$
 - I: output current without multiplication
 - Instantaneous multiplication is random value; *M* is average multiplication
 - -Controlled by reverse bias
 - » M=1 expensive pin diode
- APD responsivity

$$\mathfrak{R}_{APD} = \eta q \lambda M / hc = M \mathfrak{R}_0$$

 \Re_0 : responsivity at M = 1

Avalanche Photodiode: Ionization Rates and Noise

- Ionization rates
 - Hole (electron) ionization rate: efficiency of creating new holeelectron pair by colliding hole (electron)
- Creation of new hole-electron pair adds noise
 - -Minimize noise by maximizing difference in ionization rates
 - » Want only one type of carrier responsible for avalanche process
 - •Silicon: electron ionization rate is 100× hole ionization rate
 - •Ge, GaAs and InGaAs: closer ratios (5x→10x) ⇒ more noise
 - •Silicon detectors (short-λ) have less noise than non-silicon (long-λ) detectors

Detectors: Signal-to-Noise Ratio

- •Use power signal-to-noise ratio
 - "Signal" is signal power delivered to resistor by signal current
 - "Noise" is noise power delivered to same resistor
- Signal-to-noise ratio, SNR

$$\frac{S}{N} = \frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{\left\langle i_s^2 \right\rangle R}{\left\langle i_N^2 \right\rangle R} = \frac{\left\langle i_s^2 \right\rangle}{\left\langle i_N^2 \right\rangle}$$

- SNR independent of R; need only mean-square signal and noise currents
- •Two noise mechanisms with photodiodes...
 - -Shot noise and...
 - -Thermal noise

Signal-	to-noise	ratio
---------------------------	----------	-------

- Arbitrary resistor cancels out of numerator and denominator
 - *** SNR independent of resistor**
- Need to calculate only mean-square signal and noise currents

Detectors: Shot Noise

- Associated with quantization of charge or light
- Mean-square noise current:

$$\langle i_N^2 \rangle_{\text{shot noise}} = 2qIB \qquad (I = I_L + I_{\text{dark}})$$

- -1: dc current of device
- -B: electronic bandwidth
- pin diode dc current:
 - -dc output current due to incident light $(I_L = \Re P)$
 - I_{dark}: dark current
 - » dc current with no input illumination (e.g., thermal generation and surface leakage currents)
 - » I_{dark} in long- λ detectors ~10x to 100x silicon short- λ detectors
 - »In APDs...
 - Amplified bulk dark current, I_{bulk}
 - Unamplified surface currents, I_{surface}
 - Can be made zero with guard-ring design

Rcvrs-16

Noise power

- This much noise power in frequency region from f_0 -(B/2) \to f_0 +(B/2)
 - $*f_0$: center of passband
- $\ll \langle i_N^2 \rangle$ independent of central frequency (f_0) (white noise)
- •Typical dark current densities

Material	Density (A/cm2)		
Silicon	10 ⁻⁶ -10 ⁻⁷		
InGaAs	10 ⁻⁴ -10 ⁻⁶		
Ge	10 ⁻³		

APDs: Excess Shot Noise

Avalanche process contributes more noise described

$$\left\langle i_N^2 \right\rangle_{\text{shot APD}} = 2qI|_{M=1} M^2 BF(M)$$

- F(M): excess noise factor
 - » Extra noise added by avalanche process
 - » Depends on...
 - Detector material
 - Shape of E field
 - Relative ionization rates
 - » Modeled as...

$$F(M) \approx kM + (1-k)\left(1 + \frac{1}{M}\right) \approx M^{x}$$

Material	k	X
Silicon	0.02-0.04	0.3-0.5
Germanium	0.7-1.0	1.0
InGaAs	0.3-0.5	0.5-0.8

- Relative ionization rates
 - **☞** k: ratio of electron generation rate to hole rate
 - r or inverse since k≤1
- •Excess noise has effect in APD applications
 - Optimum M exists that maximizes SNR
- •In APDs, two types of dark current
 - Surface-defect dark current, I_{surf}
 - » Bypasses gain region
 - » Not amplified
 - » Frequently neglected
 - » Made 0 if reverse-biased guard ring incorporated into diode design
 - Bulk dark current, In
 - » Passes through amplification region and is amplified

Detectors: Thermal Noise

- •Any resistive load (or device with associated resistance) produces noise
- •Mean-square thermal noise current...

$$\left\langle i_N^2 \right\rangle_{\text{thermal}} = \frac{4kTB}{R}$$

T: noise temperature

B: electronic bandwidth

R: resistance value

-Assumes power delivered to matched load $(R_L = R)$

Detectors: Signal-to-Noise Analysis

•SNR of detector loaded by resistor R₁

$$\frac{S}{N} = \frac{\left\langle i_s^2 \right\rangle \Big|_{M=1} M^2}{2q \left(I_L \Big|_{M=1} + I_D \right) M^2 F(M) B + 2q I_{\text{surf}} B + \left(4kTB / R_L \right)}$$

- -Numerator: mean-square signal current
- -Denominator
 - » (Amplified) shot noise due to
 - •dc signal current (I,) (before amplification)
 - •Bulk dark current (ID)
 - » Shot noise due to surface-leakage dark current I_{surf}

Rcvrs-19

» Thermal noise due to load resistor

SNR of pin Diode

- •For pin photodiode
 - -M=F(M)=1
 - Dominant noise source usually thermal noise
 - Constant input pulse...

$$i_s = \eta q \lambda P / hc = \Re P$$
 $\langle i_s^2 \rangle = \Re^2 P^2$

$$SNR_{pin \, diode} \approx \frac{\Re^2 P^2}{4kTB/R_L}$$

SNR of APDs

- For small M: thermal noise dominant; SNR increases with M
- Large *M:* $M^2F(M)$ makes shot noise dominant; SNR decreases with M

-SNR has a maximum SNR at optimum M

• Optimum *M*: $M_{\text{opt}} = \left(\frac{2qI_{\text{surf}} + (4kT/R_L)}{xq(I_L + I_D)}\right)^{\frac{1}{2+x}}$

- Si APDs: M_{opt} = 80 \rightarrow 100
 - -SNR improves $40x \rightarrow 50x$ (16 \rightarrow 17 dB)
 - -Excessive noise in long- λ APDs restricts use

Detectors: Linearity

• Linearity: of output current vs. optical input power curve

- •Required for analog signal fidelity
- •PIN diodes:
 - -Excellent
 - -Typically linear over 6 decades of input
- •APDs:
 - -Not quite as good
 - -High linearity usually not required for weak signals

PIN Diode: Speed of Response

Factors

1. Transit time

- » Time to *drift* across depletion region: $\tau = w/\langle v \rangle$
 - <*v*>:Scattering-limited velocity (Si: 1.0×10⁵ m/s)
 - Depletion width of 10 $\mu m;$ response time \approx 0.1 ns (~10 GHz bandwidth)
 - Minimize by making w small (decreases sensitivity)

2. Diffusion time

- » Time for carriers created in *p* or *n* material (close to depletion region boundary) to diffuse into depletion region
 - Diffusion process is slow
 - Small fraction of carriers involved
- » Minimize by ensuring that most of carriers generated in depletion region
 - •Make w large $(w>>1/\alpha)$
 - [Increased depletion region increases transit time, however]

L				

PIN Diode: Speed of Response (cont.)

- 3. RC time constant of device and associated circuitry
 - -Bandwidth limitation: $B_{max} = 1/2\pi RC_d$
 - » R: input resistance of preamplifier in parallel with load and device resistance (keep small for fast receiver, R~50 Ω)
 - » C_d device capacitance: = $\varepsilon A/w$
 - Reduce C_d by making A small (decreased sensitivity) and w large (increases transit time, causing tradeoff)
 - **−Usual compromise:** $\mathbf{w} \approx \mathbf{2}/\alpha$
 - •Typical C_d < 1 pF
- Primary limit in well-designed, fast pin diode (used in low-resistance circuit): transit time across depletion region
- Fast silicon devices have response <1 ns (multi-GHz bandwidths)

APD: Speed of Response

- •Response typically slower than fast pin diodes
 - -Carriers must drift into avalanche region
 - -Created carriers must drift back,
 - » Makes total transit time ~2x longer
- Constant gain-bandwidth product constraint
 - -Caused by giving avalanche process time to occur
 - -Typical value: *M⋅BW* ≤200 GHz

Detectors: Reliability •No major problem •Based on accelerated-temperature lifetime testing -Projected lifetime: ~108 hours Rcvrs-26

APDs: Temperature Sensitivity

ullet M quite temperature sensitive

•Use temperature-compensating feedback circuit to minimize effect

Detector Power and Bit-Error-Rate Revisited

- Digital receiver (left)
 - Detects optical signal and converts to electrical signal
 - Decides whether electrical output represents "1" or "0" (using decision circuit), and...
 - Generates logic voltage output
- •Threshold voltage (decision level) critical to determining bit error rate (BER)
 - -Threshold expressed as fraction k of expected output of "1"
 - -Errors made due to noise (right)

Receivers: Noise Models

- •Simplified noise assumptions...
 - -Detector output currents are Gaussian random variables

$$p(i_N) di_N = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(i_N - \bar{i})^2}{2\sigma^2}} di_N$$

- -Mean value of current for logical "1": $\overline{i(1)}$
- -Mean value of output current for logical "0": $\overline{i(0)}$ (= 0, later)
- -Standard deviation σ is measure of width...
 - » Mean square noise current: $\langle i_N^2 \rangle = \sigma^2$
 - » Assume standard deviations σ_1 and σ_0 are equal

Receivers: Noise Models (cont.)

- Errors
 - -"0" sent: error if i_N positive and $i_N > k\overline{i_N(1)}$
 - -"1" sent: error if i_N negative and $i_N > (1-k)\overline{i_N(1)}$
 - Total probability of error is...

$$P_{e} = P(\mathbf{0}|\mathbf{1})P(\mathbf{1}) + P(\mathbf{1}|\mathbf{0})P(\mathbf{0})$$

-If P(1) = 1/2 and P(0) = 1/2

» Combined error probability is...

$$P_e = \left(1/2\right) P \left[i_N < -(1-k)\overline{i(\mathbf{1})}\right] + \left(1/2\right) P \left[i_N > k\overline{i(\mathbf{1})}\right]$$

Detectors: Threshold Location and BER

• Substituting Gaussian distribution, can show that probability of error is...

$$P_{e} = \text{BER} = \frac{1}{4} \left[\text{erfc} \left(\frac{\bar{i}(1) - I_{D}}{\sigma_{1} \sqrt{2}} \right) + \text{erfc} \left(\frac{I_{D} - \bar{i}(0)}{\sigma_{0} \sqrt{2}} \right) + \right] \qquad (I_{D} \equiv k \, \bar{i}(1))$$

•Optimum threshold location to minimize BER is...

$$\frac{\bar{i}(1) - I_D}{\sigma_1 \sqrt{2}} = \frac{I_D - \bar{i}(0)}{\sigma_0 \sqrt{2}} = Q \quad \Rightarrow \quad I_D = \frac{\sigma_0 \bar{i}(1) + \sigma_0 \bar{i}(0)}{\sigma_0 + \sigma_1}$$

•BER is...

BER =
$$\frac{1}{2} \operatorname{erfc}\left(\frac{Q}{2}\right) \approx \frac{e^{-\frac{Q^2}{2}}}{Q\sqrt{2\pi}} \text{ (for } Q > 3\text{)}$$

• Benchmarks:

- Q= 4.76 (BER =10⁻⁶)
- $-Q = 6.00 (BER = 10^{-9})$
- -Q=7.04 (BER = 10^{-12})

BER vs. SNR

Assume

$$- \sigma_0 = \sigma_1 = \sigma = \sqrt{\langle i_N^2 \rangle}$$

$$-I_D = [\overline{i(1)} + \overline{i(0)}]/2$$
 (i.e., midway)

$$BER = \frac{1}{2} \operatorname{erfc} \left(\frac{\sqrt{SNR}}{2\sqrt{2}} \right)$$

Receivers: Minimum Required Power (cont.)

- •Sample example (pp. 187-188, but BER = 10^{-9})
- Begin with desired BER; find required SNR...

» BER = 10⁻⁹ needs
$$\sqrt{\langle i_s^2 \rangle} / \sqrt{\langle i_N^2 \rangle} = 21.5 \text{ dB} \Rightarrow 11.89$$

Limiting noise (e.g., thermal noise for pin diode or shot noise for APD), and calculate...

$$\sqrt{\langle i_N^2 \rangle} = \sqrt{\frac{4kTB}{R_I}} = \sqrt{\frac{(4)(1.38 \times 10^{-23})(400)(10^7)}{50}} = 6.65 \times 10^{-8}$$

-From required SNR, find $\sqrt{\langle i_s^2
angle}$...

$$\sqrt{\langle i_s^2 \rangle} = \sqrt{\text{SNR}_{\text{req}}} \sqrt{\langle i_N^2 \rangle} = (11.89)(6.65 \times 10^{-8}) = 7.90 \times 10^{-7} \text{ A}$$

-Find the optical power required at the detector to achieve specified BER..

$$P_{\min} = \sqrt{\langle i_s^2 \rangle} / \Re = 7.90 \times 10^{-7} / 0.4 = 1.976 \times 10^{-6} \text{ W} = 1.976 \ \mu\text{W}$$

- •Ex.,
 - **BER of 10⁻⁶ with photodiode detector**
 - Responsivity of 0.4 A/W
 - $^{\mbox{\tiny LSS}}$ SNR limited by thermal noise (with a 50 Ω load, a 400K noise temperature, and a 10 MHz noise bandwidth)
 - 10 Requires $< i_s > / < i_N > = 10^{19.6/20} = 9.55$ and $P_{min} = 1.587 \mu W$
- Have neglected pulses that spread out of bit periods
 - Effect can lead to form of noise called intersymbol interference
 - Minimize with
 - ***Equalization amplifier or**
 - *Make bit spacing $T_b > 4$ times RMS pulse spreading of fiber

Receivers: Noise and Sensitivity

- Receiver front-end:
 - -Combination of detector and preamplifier
- •Receiver noise properties set by...
 - » Detector
 - » Amplifier
 - Not detector alone
- •Generally three common receiver implementations

- 1. Low-impedance front-end
- 2. Integrating front-end
- 3. Transimpedance amplifier front-end
- (Some do *not* fall into these categories)

Receivers: 1. Low-impedance Front-End

- Detector operates into low-impedance amplifier
 - Usually 50 Ω impedance
 - -Ready availability of wideband RF amplifiers
- Choose R_L equal to amplifier input resistance
 - e.g., 50 Ω amplifier calls for 50 Ω load
- Poor preamplifier (not recommended)
 - Low sensitivity...
 - -Small voltage across amplifier & load resistance
 - -High thermal noise from small load/amplifier resistance

Receivers: 2. High-impedance Front-End

- Amplifier has high R_{in}
 - $-R_L = R_{in}$
- Larger signal voltage and less thermal noise
 - Amplifier can use FET input for large R_{in}
- Capacitances in parallel with load/amplifier resistance:
 - -Total: C_τ
 - » Detector capacitance plus
 - » Amplifier input capacitance plus
 - » Parasitic capacitances
- Current generator driving parallel RC circuit
 - -Integrator (integrating front-end)

Rcvrs-37

•Equivalent circuit of receiver

$$\bowtie R_{det} >> R_L / | R_{amp}$$

Receivers: 2. High-impedance Front-End (cont.)

- Bandwidth: $1/2\pi R_{parallel} C_T$
 - » $R_{parallel}$: 100s k $\Omega \to \text{few M}\Omega$
 - » C_{τ} : few pF or less
 - » Bandwidth ≤ kHz range
 - Too low for high bit-rate
- Equalization amplifier compensates for low bandwidth (see example)
 - Choose R_1 & $C \Rightarrow 1/R_1C = 1/R_1C_T$
 - » Equalizer zero cancels frontend pole
 - » Combined bandwidth > frontend bandwidth

- Pro: best sensitivity of all configurations
- Con:
 - Requires additional circuit
 - Limits dynamic range
 - Limits dc response
 - » Integrated low-frequency components saturate preamp

Preamp/detector

- \square Equivalent voltage source $V_{amp}(\omega)$ and resistance R_{amp}
- **I** Transfer function of circuit is
- - *Making $R_1 >> R_{amp} + R_2$ ensures higher bandwidth than integrating front-end alone

$$\frac{V_{out}}{V_{amp}} = \frac{R_2 (1 + j\omega R_1 C)}{R_1 + R_{amp} + R_2 + j\omega R_1 C (R_{amp} + R_2)}$$

$$f_{\text{combined}} = \frac{1}{R_1 C} \frac{R_1 + R_{amp} + R_2}{R_{amp} + R_2}$$

Receivers: 3. Transimpedance Front-End

- Current-to-voltage convertor (gain of R_L)
 - -Bandwidth: A (amplifier gain)/ $2\pi R_I C_T$
 - -No equalization amp
- Low-frequency components reduced by 1/(A+1)
 - -Reduces amplifier saturation
 - -Increases dynamic range
- Pros:
 - -Simple (no equalization amp)
 - -Good bandwidth
 - -Good dynamic range
- Cons:
 - -More noise (less sensitivity) than integrating front-end

Rcvrs-39

□ Factor of *A*+1 larger than unequalized integrating front-end)

Receivers: Amplifier Noise Effects

- Actual receivers: amplifier noise dominates detector noise
- •How to account for amplifier noise?
 - 1. Low-impedance front-ends
 - -Amplifier noise figure F_n
 - » Describes noise added by amplifier
 - » Usually specified in dB; convert to numerical value for formulas
 - » Good low-noise amplifier: $F_n < 3$ dB; otherwise, ≥ 6 dB
 - -SNR:

$$\frac{S}{N} = \frac{G^2 \Re PM^2}{2q(\Re P + I_{\text{dark}})G^2 M^2 F(M)B + (4kTBF_n G^2/R_L)}$$

» pin diode: M = F(M) = 1

» APD: SNR maximum at M_{opt}

Additional

$$M_{\text{opt}} = \left(\frac{2qI_{\text{surf}} + (4kTF_n/R_L)}{xq(\Re P + I_{\text{obs}})}\right)^{\frac{1}{2+x}}$$

Rcvrs-40

- See text for more detail on noise figure...
 - Amplifier generates thermal noise at out put (see b)
 - Amplifier noise is "referred" back to input
 - *As if noise was generated by R_L (see c)
 - $*F_N$ is value that gives correct noise multiplier... $F_N = 1 + \frac{\left< i_N^2 \right>_{\rm amplifier} R_L}{4kTRG^2}$

$$F_N = 1 + \frac{\left\langle i_N^2 \right\rangle_{\text{amplifier}} R_L}{4kTBG^2}$$

- ***Equivalent resistance of RL/FN generates**
- same amount of noise (see d)

Note: All current generator labels show mean-square currents

Receivers: FET Front-Ends

- 2. FET front-ends
- •Can use either FETs or bipolar junction transistors
 - -FETs: superior noise properties
 - -GaAs microwave FETs for high-data-rate
- •Representative common-source preamp
 - -Principal sources of noise
 - » Thermal noise from
 - •FET channel resistance
 - •Load resistor R_L
 - » Shot noise due to FET gate leakage current
 - » Electronic 1/f noise of FET
 - » See next page

Rcvrs-41

Fig. 6.18

p. 195

Receivers: FET Front-Ends (cont.)

Mean-square noise current of amplifier

Eq. 6.102 p. 194

$$\begin{split} \left\langle i_{N}^{2} \right\rangle_{\text{amp}} &= \left(4kT/R_{L} \right) I_{2} B_{R} + 2q I_{\text{gate}} I_{2} B_{R} + \left(4kT\Gamma/g_{m} \right) \left(2\pi C_{T}^{2} \right) f_{c} I_{f} B_{R}^{2} \\ &+ \left(4kT\Gamma/g_{m} \right) \left(2\pi C_{T}^{2} \right) I_{3} B_{R}^{3} \end{split}$$

- B_R: bit rate
- R_i: load or feedback resistor
- I_{gate}: FET gate leakage current
- $-g_m$: FET transconductance
- C_T: total input capacitance
- f_c : FET 1/f-noise corner frequency
- Γ: FET channel noise factor
- I_{1} , I_{2} , I_{3} , and I_{f} : $\underbrace{Personick\ integrals}$ (constants depending on input/output pulse shapes)
- Channel-noise factor Γ describes noise contribution from channel resistance and gateinduced noise

- $-C_{T}\!\!=C_{d}+C_{s}+C_{gs}+C_{gd}$
 - » C_d: detector capacitance
 - » C_s: stray capacitance,
 - » C_{as} : FET gate-to-source capacitance
 - » C_{ad}: gate-to-drain capacitance
- -Corner frequency f_c of 1/f noise
 - » FET parameter
 - » Frequency where device 1/f electronic noise equals thermal noise of channel (characterized by Γ)
- -Typical values shown in text and notes

Rcvrs-42

Personick integrals

- **☞ Values shown below**
- Depend on pulse shape entering and leaving fiber (rectangular input and raised cosine out)
- **™** Type of coding
 - *NRZ (non-return-to-zero) coding
 - **❖Usual on-off coding that follows data**
 - ***RZ** (return-to-zero) coding
 - **❖**Data transition every bit period
 - **❖**Used to encode clock on data

Table 6.4 p. 195

Si

•Stray capacitance, C_s

Usually estimated o

Minimize by using

Table 6.5 p. 196

from measured data

Parameter

Parameter

GaAs

	Coding	\sum_{i}	
	NRZ	RZ	
I_1	0.548	0.500	
l ₂	0.562	0.403	
l ₃	0.0868	0.0361	
l _f	0.184	0.0984	

	MESFET	MOSFET	JFET
g_m (mS)	15-50	20-40	5-10
C_{qs} (pF)	0.2-0.5	0.5-1.0	3-6
C_{gs}^{\prime} (pF) C_{gd}^{\prime} (pF)	0.01-0.05	0.05-0.1	0.5-1.0
Γ	1.1-1.75	1.5-3.0	0.7
I _{gate} (nA)	1-1,000	0	0.01-0.1
I _{gate} (nA) f _c (MHz)	10-100	1-10	<0.1

Receivers: FET Front-End Noise (cont.)

$$\left\langle i_{N}^{2} \right\rangle_{\text{amp}} = (4kT/R_{L})I_{2}B_{R} + 2qI_{\text{gate}}I_{2}B_{R} + (4kT\Gamma/g_{m})(2\pi C_{T}^{2})f_{c}I_{f}B_{R}^{2}$$

$$+ (4kT\Gamma/g_{m})(2\pi C_{T}^{2})I_{3}B_{R}^{3}$$

$$= (4kT\Gamma/g_{m})(2\pi C_{T}^{2})I_{3}B_{R}^{3}$$

- First term
 - Thermal noise of load resistor
 - Make resistor large...
 - » But reduces receiver dynamic range
- Second term
 - Shot noise of gate leakage current
 - Choose FET with low value of I_{gate}

- Third term
 - 1/f noise of preamp
 - Choose FET with low 1/f
 noise (low value of f_c)
- Fourth term
 - FET channel noise
 - Choose FET with maximum value of g_m/C_T²

Receivers: Noise in FET Front-Ends (cont.)

- High-bit-rate designs
 - Short-circuit common-source gain-bandwidth product

$$f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd}\right)}$$

- » Used to describe FET preamp wideband performance
- Usually interested in optimizing receiver performance at high bit rates...
 - » Noise dominated by fourth term (due to B_R^3 dependence) so...
 - » Minimum noise current:

n noise current:
$$\left\langle i_N^2 \right\rangle_{\text{amp min}} = (32kT) \frac{\Gamma(C_d + C_s)}{f_T} I_3 B_R^3 \quad \text{(for large } B_R \text{)}$$

» Lowest amplifier noise when FET chosen that has maximum figure of merit of...

$$FOM_{FET} = \frac{f_T}{\Gamma(C_d + C_s)}$$

Rcvrs-44

•Note: Choice of best FET depends on capacitance of optical detector

If you change detector to one with different Cd, also change preamp FET

Receivers: Noise in BJT Front-Ends

- •Bipolar preamplifiers in some receiver front-ends
 - -Low bit rates: noise higher than FETs (not recommended)
 - -High bit rates: comparable noise
- •Representative common-emitter preamp

Fig. 6.19

- Principal noise sources:
 - -Thermal noise from the load resistor R_L
 - -Shot noise due to base and collector bias currents (I_b and I_c)
 - -Thermal noise from base-spreading resistance r_{bb}
- Amplifier mean-square noise current...

$$\left\langle i_{N}^{2} \right\rangle_{\text{amp}} = \left(4kT/R_{L}\right)I_{2}B + 2qI_{b}I_{2}B + \left(2qI_{c}/g_{m}^{2}\right)\left(2\pi C_{T}^{2}\right)I_{3}B^{3} + 4kTr_{bb'}\left[2\pi(C_{d} + C_{s})\right]^{2}I_{3}B^{3}$$

Rcvrs-45

•Typical BJT parameters

Parameter	Value	
β	100	
r_{bb}	20 Ω	
C_{bc}	0.8 pF	
$f_{\mathcal{T}}$	10 GHz	

Receivers: Noise in BJT Front-Ends (cont.)

$$\left\langle i_{N}^{2} \right\rangle_{\text{amp}} = \left(4kT/R_{L}\right)I_{2}B + 2qI_{b}I_{2}B + \left(2qI_{c}/g_{m}^{2}\right)\left(2\pi C_{T}^{2}\right)I_{3}B^{3}$$

$$+4kTr_{bb'}\left[2\pi(C_{d}+C_{s})\right]^{2}I_{3}B^{3}$$
Eq. 6.107
p. 196

- Parameters...
 - β: transistor current gain
 - Transistor transconductance (depends on collector bias):

$$g_m = I_c/V_T$$
 (with $V_T = kT/q$)

- Total capacitance:

$$C_T = C_d + C_s + C_{b'e} + C_{b'c}$$

 $C_{b'e}$ and $C_{b'c}$: small-signal hybrid-pi

- Capacitances depend on bias current (see notes or text)
- f_T: "short-circuit common-emitter bandwidth product

• There is optimum bias current to minimize noise

$$I_{c \text{ optimum}} = 2\pi C_0 f_T V_T \Psi(B_R)$$
where $\Psi(B_R) = 1/\sqrt{1 + (I_2 f_T^2/\beta I_3 B_R^2)}$ and

$$C_0 = C_d + C_s + C_{b'c} + C_{ie}$$

Mean-square amplifier noise current at optimum bias...

See Eq. 6.117 on p. 198 or in notes below

• Minimize noise by maximizing...

FOM_{BJT} =
$$\frac{2f_T}{C_0 + \pi f_T r_{bb'}(C_d + C_s)}$$
 (for large B_R)
$$\approx \frac{2f_T}{C_0}$$
 (for large B_R and small $R_{bb'}$)

- Base-emitter capacitance $C_{h'e}$ is function of I_c ...
 - Two components: $C_{b'e} = C_{ie} + I_c/2\pi V_T f_T$
 - *****C_{ie}: current-independent junction capacitance
 - ***Second term: "diffusion capacitance"**
 - $* f_T :$ "short-circuit common-emitter gain-bandwidth product"
 - There exists an "optimum collector current" to minimize noise...

$$I_{\text{c optimum}} = 2\pi C_0 f_T V_T \Psi(B_R)$$
 where $C_0 = C_d + C_s + C_{b'c} + C_{je}$ and $\Psi(B_R) = 1 / \sqrt{1 + \frac{I_2 f_T^2}{\beta I_3 B_R^2}}$

Mean-square amplifier noise current at optimum bias current

$$\begin{split} \left< \dot{l}_{N}^{2} \right>_{\text{BJT amplifier}} \bigg|_{I_{C} = I_{\text{c optimum}}} &= \frac{4kTI_{2}B_{R}}{R_{L}} + \frac{4\pi kTC_{0}f_{T}\Psi(B_{R})I_{2}B_{R}}{\beta} + \frac{4\pi kTC_{0}\big[1 + \Psi(B_{R})\big]^{2}I_{3}B_{R}^{3}}{f_{T}\Psi(B_{R})} \\ &+ 4kTr_{b'b}\big[2\pi(C_{d} + C_{s})\big]^{2}I_{3}B_{R}^{3} \end{split}$$

Total capacitance, C_T , can be written in terms of $\Psi(B_R)$ as $C_T = C_0[1 + \Psi(B)]$

Comparison of Noise: FET and BJT Front-Ends

- •Low B_R : FET front-end superior to BJT
- High B_R: BJT comparable to FET
- FET front-ends
 - Low B_R: Si MOSFET slightly advantageous
 - High B_R :
 - » GaAs MESFET slightly superior
 - » Si JFETs not suitable
 - Relatively low gain-bandwidth product
 - Lose gain above ~200 Mb/s

Rcvrs-47

•FET & BJT parameters

•Detector plus stray capacitance ($C_d + C_s$) = 0.2 pF; $R_1 \approx \infty$

•BJT bias current

Soptimum Barameterrent dised of >0.1 mA, g_m (n +β starts to fall for bias₂currents below the

When optimum bias carrent < 0.1 mA

 $*I_c = 0.1 \text{ m/A} \text{ assume}_{0.6}^{0.8 \text{ pF}}$

		MESFET	MOSFET	JFET
4	• g _m (mS)	40	30	6
ŀ	ow£th(ipsF)va	lu e 0.38	0.8	4.0
Δ	ov©th(isF)va C _{gd} (pF)	0.02	0.1	0.8
•	Γ	1.1	2.0	0.7
	I _{gate} (nA) f _c (MHz)	2.0	0	0.05
	f _c (MHz)	30	1.0	0

Receivers: Sensitivity of Detectors + Front-Ends

- •Power required on receiver
 - -To achieve BER in presence of both...
 - » Detector noise and...
 - » Amplifier noise
- First will consider pin receiver and, then, more-complicated case of APD receiver

Receivers: PIN Diode/Preamp Sensitivity

- •>20 dB above quantum limit
 - -Neglect signal-related shot noise
- •Total mean-square noise current: $\left\langle i_N^2 \right\rangle_{\mathrm{Total}} = \left\langle i_N^2 \right\rangle_{\mathrm{amp}} + 2qI_{\mathrm{dark}}I_2B$
- Find required SNR for desired BER (from BER vs. SNR equation or curve)
- Detector power for pin diode receiver...

$$P = (hcSNR/q\lambda)\sqrt{\langle i_N^2 \rangle_{Total}}$$

- P calculated and plotted as function of B_R ,
 - -Once pin diode parameters and...
 - -Amplifier type and parameters are known
- Straight-forward application of SNR concepts

Receivers: APD/Preamp Sensitivity

- More difficult since...
 - M is additional variable and...
 - Excess noise present
 - » $\textit{M}_{\textit{opt}}$ gives best sensitivity (depends on device, preamplifier noise, and $\textit{B}_{\textit{R}}$)
- At M=M_{opt}
 - APD noise ≈ preamplifier noise
 - Dark-current shot noise: $\left\langle i_{N}^{2}\right\rangle _{\mathrm{dark}}\approx2qI_{\mathrm{surface}}I_{2}B_{R}+2qI_{\mathrm{D\,bulk}}\,M^{2}F(M)I_{2}B_{R}$
 - Required power for an APD receiver is...

$$P \approx \left(\frac{hc}{q\lambda}\right)Q\left[QqB_RI_1F(M) + \sqrt{\frac{\left\langle i_N^2\right\rangle_{\text{Total}}}{M^2} + 2qI_DF(M)B_RI_2}\right]$$

Q: Q-parameter required by BER

 I_1 and I_2 : Personick integrals

$$< i_N^2 >_{Total} = < i_N^2 >_{amp} + 2qI_{surf}I_2B$$

• Continue on next slide...

Receivers: APD/Preamp Sensitivity (cont.)

- •If I_D is small enough that it adds negligible noise (true for short- λ detectors)...
 - -Required receiver power simplifies to...

$$P = \left(hcQ/q\lambda\right) \left(\left(\sqrt{\left\langle i_N^2\right\rangle_{\text{Total}}}/M\right) + qQBI_1F(M)\right)$$

-Optimum gain

$$M_{\text{opt}} = \left(1/\sqrt{k}\right)\sqrt{\left(\sqrt{\left\langle i\frac{2}{N}\right\rangle_{\text{Total}}}/qI_{1}BQ\right) - k + 1}$$

- •If $I_D \underline{not}$ negligible (long- λ detectors)...
 - $-M_{opt}$ smaller than value predicted (M_{opt} found graphically or numerically at each B_R by finding M that minimizes receiver power)
 - -Calculate total noise and sensitivity as function of B_R

Receivers: Extinction Ratio Effects

- Extinction ratio: r = P(0)/P(1)
 - Indicates if source turned off for "1"
- Extinction ratio >1
 - Reduces receiver sensitivity (sensitivity penalty)
 - » Shot noise associated with reception of "0"
 - » Not all of received optical power being modulated
 - PIN diode receiver
 - » Power for desired BER is (1+r)/(1-r) larger
 - APD receiver
 - » Increases required power in complicated fashion
 - » r affects M_{opt} (found numerically)

1(0/13-32

•Digital transmission characteristics

- Horizontal width: optimum sampling time interval for signal to be sampled
- Vertical height: Amplitude distortion of signal

 $As f_{max}$ is reached, vertical height of eye decreases; eye closes

- Spacing "A": noise when 1 is sent
- Spacing "B": noise when 0 is sent.
- ™ Width of `"C": timing jitter (or edge jitter)
 - *Jitter defined as
- Rise (and fall) times from rise (and fall) times of eye
 - *Needs long strings of logical 1s and 0s in data stream

$$J(\%) = (\Delta T/T_b) \times 100\%$$

Example of Eye Pattern from Sampling 'Scope

- Experimental performance of high bit-rate link measured from eye pattern
- •Time-domain measurement

 Pattern is superposition of outputs from pseudorandom stream of data pulses

Receivers: Summary

Properties of pin diodes and APDs

	Photodiodes			APDs	
	Si	Si Ge InGaAs		Si	Ge
λ (nm)	400-1100	500-1800	1000-1500	400-1100	500-1650
Quant. Eff	80%	50%	70%	80%	75%
t _{rise} (ns)	0.01	0.3	0.1	0.5	0.25
Bias (V)	15	6	10	170	40
ℜ₀(A/W)	0.5	0.7	0.4	0.7	0.6
M (gain)	1	1	1	80-150	80-150

Tabel 6.8 p. 203

- Silicon detectors
 - Mature technology
 - Operate close to theoretical limits in short- λ region
- InGaAs detectors
 - Useful in long- λ region
- Germanium-based detectors
 - Long- λ detector
 - Fundamental difficulties with
 - » Noise performance
 - » Noise in APDs and
 - » High dark current

Receivers: Summary (cont.)

- Noise contributions of preamplifier are important
 - -High-impedance preamps
 - » Pros: best sensitivity
 - » Cons: need equalization amplifier
 - -Transimpedance preamps
 - » Pros:
 - •Simple design/operation
 - •Increased dynamic range
 - » Con: increased noise
 - » Frequently-used receiver
- •Representative sensitivities for BER of 10⁻⁹

Rcvrs-56

Fig. 6.23 p. 204

Receivers: Summary (cont.)

- Observations...
 - -Increased sensitivity required at higher B_R
 - -Si FET receivers: good up to ~ 70 Mb⋅s⁻¹
 - -GaAs MESFETs: higher B_R
- APDs
 - -Pro: ~10 dB increased sensitivity
 - -Cons:
 - » More operating power required
 - » Higher cost
 - » Require temperature compensation
- Best detector/preamplifier combination
 - ~10 dB from quantum-limited detection